Approximate equality is no fuzzy equality

نویسندگان

  • Martine De Cock
  • Etienne E. Kerre
چکیده

We argue that fuzzy equivalences, and in particular fuzzy equalities, in general are not suitable to model approximate equality due to the notion of transitivity. Using them for this purpose therefore leads to counter-intuitive results, as we illustrate in detail in a fuzzy relationbased framework for the representation of linguistic modifiers. We solve the problem by choosing resemblance relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equality propositional logic and its extensions

We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...

متن کامل

Approximate Equalities on Rough Intuitionistic Fuzzy Sets and an Analysis of Approximate Equalities

In order to involve user knowledge in determining equality of sets, which may not be equal in the mathematical sense, three types of approximate (rough) equalities were introduced by Novotny and Pawlak ([8, 9, 10]). These notions were generalized by Tripathy, Mitra and Ojha ([13]), who introduced the concepts of approximate (rough) equivalences of sets. Rough equivalences capture equality of se...

متن کامل

(δ, )-Equality of Fuzzy Sets

The Cai δ-equality of fuzzy sets corresponds to the Lukasiewicz t-norm. In this paper we study the notion of (∗, δ)-equality, a concept which generalizes the δ-equality to the case of the fuzzy set theory based on an arbitrary continuous t-norm ∗. We investigate the robustness of some fuzzy implication operators in terms of (∗, δ)-equality.

متن کامل

On stability in possibilistic linear equality systems with Lipschitzian fuzzy numbers

Linear equality systems with fuzzy parameters and crisp variables defined by the extension principle are called possibilistic linear equality systems. The study focuses on the problem of stability (with respect to perturbations of fuzzy parameters) of the solution in these systems.

متن کامل

Some properties of possibilistic linear equality systems with weakly noninteractive fuzzy numbers

Possibilistic linear equality systems (PLES) are linear equality systems with fuzzy parameters and crisp variables. We study the problem: For a given PLES with weakly noninteractive fuzzy number parameters how does the solution change if the parameters are varied?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001